- Title
- Sulfur-doped mesoporous carbon nitride with an ordered porous structure for sodium-ion batteries
- Creator
- Cha, Wangsoo; Kim, In Young; Lee, Jang Mee; Kim, Sungho; Ramadass, Kavitha; Gopalakrishnan, Kothandam; Premkumar, Selvarajan; Umapathy, Siva; Vinu, Ajayan
- Relation
- ARC.DP170104478, DP150104828 & DE170101069 http://purl.org/au-research/grants/arc/DE170101069
- Relation
- ACS Applied Materials & Interfaces Vol. 11, Issue 30, p. 27192-27199
- Publisher Link
- http://dx.doi.org/10.1021/acsami.9b07657
- Publisher
- American Chemical Society
- Resource Type
- journal article
- Date
- 2019
- Description
- Mesoporous carbon nitride (MCN) with well-ordered porous structures is a promising anode material for secondary ion batteries owing to their unique physico- and electrochemical properties. However, the practical application of these MCNs in sodium-ion batteries (SIBs) is still limited because of their confined interlayer distance, which results in restricted accommodation of Na ions inside the lattice. Here, we report on the synthesis of highly ordered sulfur-doped MCN (S-MCN) through a hard template approach by employing dithiooxamide (DTO) as a single molecular precursor containing carbon, nitrogen, and sulfur elements. The interlayer distance of carbon nitride is significantly expanded upon the introduction of larger S ions on the MCN lattice, which enables high capability of Na ion accommodation. We also demonstrate through the first-principles density functional theory calculation that the present S-MCN is highly optimized not only for the chemical structure but also for uptaking abundant Na ions with high adsorption energy. The specific discharge capacity of SIBs appears to be remarkably enhanced for S-MCN (304.2 mA h g–1) compared to the nonporous S-CN (167.9 mA h g–1) and g-C3N4 (5.4 mA h g–1), highlighting the pivotal roles of the highly ordered mesoporous structure and S-doping in enhancing the electrochemical functionality of carbon nitride as an anode material for SIBs.
- Subject
- heteroatom; sulfur; doping; carbon nitride; ordered structure; sodium ion battery; anode; SDG 7; Sustainable Development Goals
- Identifier
- http://hdl.handle.net/1959.13/1463996
- Identifier
- uon:46886
- Identifier
- ISSN:1944-8244
- Language
- eng
- Reviewed
- Hits: 1050
- Visitors: 1048
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|